Available online at www.sciencedirect.com
INTERNATIONAL Mﬂllll. oF

screnor (eineor: SOLIDS a
STHUI:TUHES

www.elsevier.com/locate/ijsolstr

- =
ELSEVIER International Journal of Solids and Structures 43 (2006) 46484672

Perturbation methods for the analysis of the dynamic
behavior of damaged plates

V.K. Sharma ® M. Ruzzene >*, S. Hanagud °

& Millennium Dynamics Corp., Acworth, GA 30101, USA
® School of Aerospace Engineering, Georgia Institute of Technology, 270 Ferst Drive, Atlanta, GA, 30332-0150, USA

Received 18 March 2005; received in revised form 7 July 2005
Available online 23 September 2005

Abstract

This paper presents an analytical method for the analysis of the dynamic behavior of damaged plates. The proposed
approach allows the derivation of mode shapes and corresponding curvature modes for plates with various kinds of
defects. Damage is modeled as a localized reduction in the plate thickness. Both point and line defects are considered
to model notches or line cracks and delaminations in the plate. Small thickness reductions are considered so that the
dynamic behavior of the damage plate can be analyzed through perturbations with respect to the undamaged modes.
Results are presented to demonstrate the sensitivity of the curvature modes with respect to the considered low damage
levels. Also, the curvature modes are used for the estimation of the strain energy of the plate and for the formulation of
a damage index which can be used to provide damage location and extent information.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The objective of a structural health monitoring system is to identify anomalies or damages such as
cracks, delamination and disbonds in structures. The term identification includes the determination of
the existence of damages, their location and their sizes or magnitudes as accurately as possible. This goal
can be achieved with the help of analytical formulations for simple structures, which can provide invalu-
able insight in the interpretation and analysis of the measured dynamic response of structures under
investigation.
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The effects of cracks on the dynamic behavior of beams and shafts have been studied by many authors.
Excellent overviews of the state-of-the-art can be found for example in Staszewski et al. (2004) and
Doebling et al. (1996). The analytical modeling of simple beam structures with through-the-width cracks
has also engaged many researchers. Most of the existing formulations are based on the description of dam-
age as an equivalent stiffness at the location of the defect. The dynamic behavior of single-sided cracked
beams can for example be found in Gudmundson (1984), Ostachowicz and Krawczuk (1990), Krawczuk
(2002a); Krawczuk and Ostachowicz (2002) and Krawczuk and Ostachowicz (1995), while the work of Hel-
lan (1984), Atluri (1986) and Haisty and Springer (1988) analyzed the effect of double-sided cracks of equal
depth. A different approach of modeling cracked beams consists in using approximated numerical solu-
tions. For example in Christides and Barr (1984), the variation of the fundamental frequency of a simply
supported beam with a mid-span crack is evaluated using a two-term Rayleigh-Ritz solution. In the
approximation an exponentially decaying crack function was used to simulate damage, and the decay rate
of the function was estimated from experimental results. The Galerkin approximation is used alternatively
in Shen and Pierre (1990) in order to achieve fast convergence rates, while in Qian et al. (1991), a Finite
Element model is used to predict the behavior of a beam with an edge crack. Finally, Luo and Hanagud
(1998) and subsequently Lestari (2001) presented a perturbation method to describe the dynamic behavior
and in particular the curvature modes of cracked beams. In these works, the perturbation analysis is based
on the assumption of a small crack whose depth is defined by a perturbation parameter. The modal behav-
ior of the cracked beams is evaluated through perturbation of the modal parameters of the undamaged
beams, so that approximate analytical expressions for the damaged modes can be obtained. The present
paper extends the formulation presented in Luo and Hanagud (1998) and Lestari (2001) to plates with
localized defects. Both point defects, or notches, as well as line defects are considered to evaluate their ef-
fects on natural frequencies, mode shapes and curvatures. Relatively little work can be found in the liter-
ature on the analytical modeling of damaged plates. Among the work considered as reference for this study,
the contributions by Ostachowicz, Krawczuk and co-workers are here mentioned as relevant to the present
investigations (Azak et al., 2001; Krawczuk, 2002b; Krawczuk et al., 2004).

The analytical formulations presented below can be used in support of experimental tests, to analyze
data and to supplement the experiments with mechanics-based analysis tools that quantify damage. In par-
ticular, the application of scanning laser vibrometry for the detection of dynamic deflection shapes allows
unprecedented amounts of information which can be successively used for the evaluation of curvature
shapes. The results presented in this work and in Luo and Hanagud (1998) and Lestari (2001), in fact indi-
cate how curvatures are extremely sensitive to damage, and how they can be successfully utilized as part of
a damage detection technique.

The paper is organized as follows. The brief introduction given in this section is followed by the presen-
tation of the analytical formulation and of the perturbation analysis for damaged plates given in Section 2.
Section 3 then presents results for plates with point defects or notches and discusses the influence of defect
size and location on various modal parameters. Section 4 extends the investigation to line defects of various
orientation, size and location, while Section 5 presents initial experimental investigations on damaged
plates. Finally, Section 6 summarizes the main results of the work and outlines the directions of future
research activities.

2. Dynamics of damaged plates

2.1. Equation of motion

The free dynamic behavior of damaged plates can be described by expressions formulated from the gen-
eral equation of motion for plates of variable thickness, as found in Leissa (1993):
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where w=w(x,y) is the out-of-plane displacement of the plate, 4 =A(x,y) is the plate thickness,
D = D(x,y) = ER*/12(1 —v?) is the plate rigidity, and m = m(x, y) = ph(x, ) is the mass per unit area of
the plate. Also E, p and v are the Young’s modulus, the density and the Poisson’s ratio of the plate material.

2.2. Modeling of notch and line defects

We consider defects described as localized reductions in the plate thickness. Notch-type damage, and line
defects along the x and y directions are specifically analyzed according to the configurations presented sche-
matically in Figs. 1 and 2. The line defects can be considered as simplified descriptions of a linear crack or
of plate delaminations oriented along the reference axis. The extension of the present formulation to line
defects of general orientation does not present any theoretical difficulties. However its implementation
and analytical derivations are quite involved, and are not reported in this paper as they do not add signif-
icant contributions to the discussion.

Damage is described by expressing the plate thickness at the defect location as

hg = ho — hp (2)

where /g is the thickness of the undamaged plate and /p is the thickness of the plate at the damage location.
Accordingly, the plate rigidity at the defect site can be expressed as:

ER o\’
Di=——9 _=Dy[1-=-"= 3
TR0 - 0( h0> 3
where Dy = Eh3/12(1 —?) is the rigidity of the undamaged plate. For a small damage, i.e. for ip < < hy,

Eq. (3) can be approximated as:
hp

Dd ED0(1—3h—> :DQ(I—E) (4)
0
where € = 3hp/ho. Similarly, the mass per unit area of the plate at the defect site can be expressed as:

won)on(-)

where mo = phg is the mass per unit area of the undamaged plate.
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Fig. 1. Schematic of plate with notch damage.
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Fig. 2. Schematic of plates with considered line defects.

The plate rigidity D(x,y) can in general be described as:
D(x,y) = Do[l — e(H(x —x1) = H(x = x2))(H(y = y1) = H(y = »2))] (6)

where x1, x, and yy, y, define the dimensions of the defect in the x, y directions, and where H is the Heaviside
step function. Eq. (6) can be conveniently manipulated to describe both notch-type defects, as well as line
loads of the kind shown in Fig. 2. Eq. (6) can in fact be rewritten as:

(H{x—x1) =Hx = x)) (H =) = HY =»))

D(x7y) = DO 1- &4D Alx Alv (7)

where b, = x, — x1, b, =y, — y1, and Ap = b *b,. For a notch defect at xp, yp (see Fig. 1), it is assumed
that

X| "Xy R Xp, VIRV, =R)p

and Eq. (6) becomes:

D(x,y) = Dy[1 — eApd(x — xp)d(y — yp)] (8)
where
3(x) = —dlzi”

is the Dirac delta function. Similar expressions can be defined to characterize a line defect. For example, a
line defect at location y = yp and parallel to the x direction (Fig. 2a) can be described as:

D) = Dot = ebity — o) [ RO a o)

while a defect at x = xp along the y direction (Fig. 2b) can be expressed as:
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D(xay) =Dy

N
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where xi,x, and y;,y, define the length of the defect, while &,# are dummy integration variables. It
is worth observing how in Egs. (9) and (10) the heaviside function is replaced by the integral of the delta
function over the extension of the defect. This substitution is adopted in order to take advantage of
properties of the delta function which are very convenient for the the analytical derivations presented
below.

A general description of line and notch defects of the kind here considered can be obtained by expressing
the plate bending rigidity as:

D(x,y) = Do[l — €yp(x, )] (11)

where yp(x,y) denotes the function describing the considered damage configuration, which can be partic-
ularized to the expressions in Egs. (8)—(10). Similarly, the mass per unit area of the damaged plate can be
described as:

i) =mo(1-32) = o1 = Sero(o)] (12)

The expressions for the plate rigidity and mass given in Egs. (11) and (12) can be substituted in Eq. (1) to
obtain a solution predicting the dynamic behavior of plates with the considered types of damage.

2.3. Perturbation solution

A solution for equation Eq. (1) can be obtained through modal superposition by imposing a solution of
the kind:

W(X,y) = Z d)i,j(x?y)eiw'jt (13)

where ¢, ;, w;; are respectively the i,jth mode shape and natural frequency (eigensolutions) of the plate,
while i is the imaginary unit. Considering for simplicity the contributions of a single mode i,j and substi-
tuting Eq. (13) in Eq. (1) gives:

?D*¢ _O*D ¢ D¢

2 2
—1=)[=—==—=-2 2 2
VH(DVig) — (1 v)(ayz Ox*  Oydx Oydx = Ox* 0y

)—miqﬁ:O (14)

where 1 = w?, and where the subscripts i,/ are omitted for simplicity. In our analysis, € is assumed to be a
small parameter corresponding to a small damage depth sp. Within this assumption, the eigensolutions
for the damaged plate can be expressed as perturbations from the solution for the intact plate, so that
the eigenfunctions and eigenvalues of the damaged plate can respectively be expressed as (Luo and
Hanagud, 1998):

b(x,y) = ¢ (x,y) — ¢V (x,y) + O(€) (15)
and
A=29— W 4 o) (16)

where ¢©(x,y), 1?) are the eigensolutions for the undamaged plate, while ¢"(x, y), A" are the first order
perturbations. Substituting the perturbed eigensolutions into Eq. (14), and collecting the coefficients of
same power of € gives a set of equations which can be solved in terms of the perturbations coefficients:
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where yp = yp(x,)), and where (-),r denotes partial derivatives with respect to the variable {. Eq. (17) rep-
resents the equation of motion for an undamaged plate, and its solution provides the undamaged modes
¢ P(x,y) and eigenvalues /¥, which can then be substituted in Eq. (18) to obtain a solution in terms of
the perturbation modal parameters ¢"(x,y), AV.

2.4. Solution of perturbation equations using Fourier series

The i,jth eigenfunction and eigenvalue for a plate supported on all edges are respectively given by
(Leissa, 1993):

¢§3) (x,y) = sin 7 s1njLﬂ (19)
x y
and
(0) D() In 2 jﬂf 2 ?
v e\ T L (20)

where L,, L, denote the plate dimensions. An approximate solution for Eq. (18) can be found by imposing
a solution of the kind:

qny
,] (x,») Z anqsm— sin—— L (21)

which corresponds to the Fourier series expansion of the perturbed mode. Substituting this expansion in
Eq. (18) gives:

2 2\ 2
pn) (mr) , QP 4
R + [ = — myLy | ) sin sin ——
Zp: Xq: ((L L, Pa> L,

moy , . 1
= (% + ¢F;;?)v2yD +(1—v) [¢533wa +¢0yp — 2¢ffy)y%] + D—z (A0 & 3 105 16© (22)
where ¢ ¢l ¥ )(x,y), AV = )»53.) are respectively defined in Egs. (19) and (20). The complexity of Eq. (22)

can be substantially reduced by exploiting the orthogonality properties of harmonic functions. Multiplying
Eq. (22) by sin7* sin* and integrating over the plate surface gives:

2 2\ ? L2 L 2\ 2
rm ST in jn L.L, L.L,
— — — — — = — 1-— —0,Ms i0sj —— 2
((Lv> + <Ly> > (<Lx> + <Ly> > nr,s 4 K1 + ( V)KZ +D0 /L ri 4 ( 3)

where

() @)

1 myg Jjny . rmx . Smy
Vi, — = — A0 sm— sin=—= sin sin— dxdy
Y R LS R T A AN N
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and

Kz—/ / qu sin D Ly D, dxdy+/ / qS sm—sm LyDme_dxdy

—2/ / d)xxsm

Also, in Eq. (22), 6, is the Kronecker symbol defined as:

5 — 1 k=1

ST 0 k1
The summation signs in Eq. (22) are eliminated in virtue of the well-known orthogonality property of
harmonic functions, which reads:

L.L
sm P in T sin ™ 6in 2™ 4y dy = =26, ,0,,
L L L 4 ’

y x y

dxdy

and corresponding versions for cosine functions.
Given the considered modes for the undamaged plate, Eq. (23) can be solved in terms of the unknowns
N5 J_ Letting r =i and s = j, yields an equation which can be solved in terms of /lﬁyz

) _ 4D
N =
i H’IQL L,

1 = (1 = v)icr] (24)

It is worth observing how the integrations required for the evaluation of the constants ky, k, are signif-
icantly simplified by taking advantage of the following properties of the delta function (Jones, 1982):

S (x)0(x — x0) = f(x0)(x) (25)

Table 1

Natural frequencies (rad/s) of plates with notch damage

Mode (i,j) hD/hO =0 hD/hO =1% hD/hO =2% hD/h() =3% hD/hO =4%
xp=L,/2 yp=L,/2

1,1 110.6 110.6 110.4 110.2 109.9

1,2 340.3 340.2 339.6 338.8 337.5

2,1 212.7 212.5 212.0 211.1 209.9

2,2 442.5 442.5 442.5 442.5 442.5

1,3 723.2 722.5 720.1 716.2 710.7
Xp = LX/3 YD = L),/3

1,1 110.6 110.5 110.4 110.0 109.6

1,2 340.3 340.1 339.3 338.0 336.1

2,1 212.7 212.6 212.3 211.7 210.9

2,2 442.5 442.2 441.4 440.2 438.4

1,3 723.2 723.0 722.3 721.2 719.5
XD:L.\’/S yD:Ly/S

1,1 110.6 110.6 110.4 110.1 109.6

1,2 340.3 340.1 339.4 338.3 336.7

2,1 212.7 212.6 212.1 211.4 210.4

2,2 442.5 442.2 441.6 440.5 439.0

1.3 723.2 722.8 721.3 718.9 715.5
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(26)

where f{(x) is a generic function. A few simple manipulations yield the following expressions:
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Fig. 3. Curvature ¢,, estimation using increasing orders of Fourier series expansion.
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4Dyb, in\>  (jn\*| 1 mg ) _imep\© [ (. )’
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which respectively define the value of k; for a notch damage and for line defects along the x and y direc-
tions. Similar expressions, here omitted for the sake of brevity, are obtained for the parameter x,.

The amplitude of the Fourier series coefficients 7, can instead by obtained by letting r # i and
s # j in Eq. (22). Summation of the various terms of the Fourier series expansion gives an approxi-
mate expression for the first order perturbation eigenvalues and eigenvectors, according to Egs. (15)
and (16).

The results obtained from the formulation presented above are here used to assess the influence of
various damage levels, at different locations on the plate surface. Natural frequencies (or eigenvalues),

and

> (x.y)

yim] xim) yim] <im]

yim) ¢ ximl ym] xim]

(¢) (d)

Fig. 4. Deflection and curvatures for mode (1,1) with ip/hy = 2% and damage located at xp = L,/3, yp = L,/3.
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modal deflections, as well as modal curvatures are studied as damage indicators to be used in the develop-
ment of a modal-based damage detection theory. The modal curvatures can be easily computed from the
obtained perturbation solution, and they are given by:

o \2
b, = —<Z> stLE sm@— Z Zﬂ”<m> smL— sm——k 0(e)

X

N . . 2

b3, =) s i 30 () sn T sin s 0@ @7)
2

b1 = (15 ) eos" cosl 4 3 Dty oS cos T+ (@)

& xy)

yim) - ¥l il

% . \“ {\\\i\\“\
5! “\“:\\\“

)

Fig. 5. Mode 1,3: Deflection and curvatures for ip/hy = 2% and damage located at xp = L,/5, yp = L,/5.



4658 V.K. Sharma et al. | International Journal of Solids and Structures 43 (2006) 4648-4672
2.5. Strain energy ratio for damage localization

The curvature modes evaluated in the previous section can be used directly as damage indicators, and
their analytical expressions can be used to evaluate the extent of damage. Alternatively, the curvatures
modes can be utilized for the evaluation of the strain energy of the damaged plate. The strain energy for
a rectangular plate vibrating according to mode m,n can be expressed as (Leissa, 1993):

l Ly Ly
Uma" = EDO/ / qsin‘xx + d)frmw + 2v¢mnm¢mnm, - 2(1 - V)(bimw dXdy (28)
0 0 ’

The evaluation of the strain energy for undamaged and damaged plate can be used as an effective strat-
egy for the identification of damage. Furthermore, the location of the defect can be also evaluated through
the estimation of the strain energy over limited regions of the plate corresponding to its subdivision into a
grid. The strain energy associated to the i,j area of the plate can be expressed as:

SR : v e E ek : 100+, .-

yiml LA x[ml yiml xim

(a) hp/ho =1% (b) hp/ho = 2%

yim o0 -

(¢) hp/ho = 4%

Fig. 6. Influence of increasing damage levels on curvature mode ¢,, = for notch at xp = L./5, yp=L,/5.
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wy

1 Xit1 Vit+1
Unn(irj) =5 Do / / G+ O, + 2V Oy, — 2(1 =) 7, dxdy (29)
Xi Vi

We define the modal strain energy ratio (SER) at location i, as:

Unali J)

am,n(la]) = Usy?)n(l’])

(30)

where U, U'” respectively denote the strain energies of the damage and undamaged plate at the considered
location. The strain energy for the damaged plate can be obtained by using the curvatures obtained from
the first order perturbation solution. Imposing Eq. (27) in Eq. (32) and neglecting higher powers of e allows
expressing the strain energy for the damaged plate as:

Um,n(iﬂj) = UE;?)n(l’]) - EAUm,n(iaj) (31)

3, 63)
&, ()

0
o x[m] y[m] i)

yiml i

(a) xp = Lo/2, yp = Ly/2 (b) zp = L, /4, yp = Ly /2

e
iy,

04
yimi %y (]

(¢) zp = L /8, yp = Ly /2

Fig. 7. Influence on damage location on curvature mode ¢21~»= for hp/hg = 2%.



4660

where

Xit1 Vitl
AU,.,.(i, j) = 2D, / / ¢§,}3w¢§fn>w + ¢(ml'3w¢§3n>w F2(1 = v)ph) O
Xi Vi

MMy, MM,
1 0 1 0
" 5V(¢fn R o S ) dxdy

M,y

V.K. Sharma et al. | International Journal of Solids and Structures 43 (2006) 4648-4672

The SER can be therefore expressed as:

AU (i, J)
Omn(i,j) =1 —e——2= 32
o)) ) (32)
The modal SER provides indications regarding the integrity of the area i, j as any variation from unity
indicates a difference between the curvature modes over the particular area. A similar concept has been

& )

@ fry)

yim) v

yim 7 S
(a) (1,1)

x[m]

yim v

x [m]
(c) (5,1)
Fig. 8. Influence on mode order on curvature mode ¢,; for hplho = 2%.
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proposed in the literature in Kim and Stubbs (1998) and Hu et al. (1991). The analytical framework
of the perturbation analysis of the plate provides a theoretical description of the concept, which, to the best
of our knowledge, has never been presented. The presented analytical study also offers the opportunity of
quantifying the extent of damage through the value of the SER, which is directly related to the level of
damage e.

The definition of strain energy ratio in Eq. (32) considers only one mode of the structure. However it is
well known that damage mostly affects regions of higher strain energy. It is thus convenient to sum
information obtained from the analysis of several modes m,n and therefore to consider a cumulative strain
energy ratio, which may be defined as

.o - AUm n(la])
a(i,j) = Zam,n(w) =1- GZ ETONAEY (33)
m,n m,n Um,n (17])
o, %1
09} | ook
08} 1 o8k
07} 1 ok
06} : 1 06F
E E
> 051 = 05f
04f : 1 04t
03} | 03k
02f ° 1 02} ?
01f | o1k
0 05 1 15 0 05 1 15
x [m] x[m]
(a) hp/ho = 2%, xp = Lo /5, yp = Ly /5 (b) hp/ho = 4%, xp = Lo /5, yp = Ly/5
oy O31
09F : 1 o9k
081 1 osh
o (o3
071 1 071 ‘
06 1 o6tk
E E
= 05[ = 05f
041 1 041
03f : 1 03f
02F 1 o2k
01f 1 01f
0 05 1 15 0 05 1 15
x [m] X [m]
(c) hp/ho = 2%, xp = 3L2/4, yp = 3L, /4 (d) hp/ho = 4%, zp = 3L /4, yp = 3L, /4

Fig. 9. Examples of modal SER for various damage locations and extents.
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This cumulative index provides a unique information which combines the results from several modes.
Modes not affected by damage because of its particular location will not contribute, whereas the index
for modes altered by the defect will be combined to provide a robust indication of damage.

3. Results for notch damage
3.1. Plate geometry and material properties

The perturbation analysis presented in the previous section is applied to evaluate natural frequencies,
mode shapes and curvature modes of damage plates. Initial results consider the effect of notch damage

at various locations, while the investigation of the effects of line defects is presented in the following section.
The complete study is performed on a rectangular plate with L, =1.5m and L, =1 m, supported on all
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® xy)
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Fig. 11. Curvature mode ¢11_”, for hp/hy = 4% and line defects of various lengths and orientations.
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edges as assumed in the analytical derivations. The plate has a thickness 4o =5 mm and it is made of
aluminum (E = 7.1 x 10" Pa, p = 2700 kg/m>, v = 0.3). The extent of damage is varied and it is defined
by the parameter € according to the definition given in the previous section.

3.2. Natural frequencies

The effect of a notch damage on the plate natural frequencies is first investigated. Various damage
locations as well as damage extents are considered for the analysis. The results of the investigations are
presented in Table 1. Damage in general tends to reduce the natural frequencies, as a result of the associated
stiffness reduction. It is interesting to observe how frequencies remain unchanged when damage is located at
the intersection of the nodal lines of the corresponding mode shape as demonstrated by the frequency of
mode (2,2) for damage at xp = L,/2, yp = L,/2. Also frequencies corresponding to higher order modes

& (xy)

,(xy)

yiml ym) 0.0 x{m]

(a) z-line defect, yp = Ly /2, x2 — 21 = 0.15 m (b) x-line defect, yp = 3Ly /4, vz —z1 = 0.3 m
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(¢) y-line defect, xp = Lo /2, y2 —y1 = 0.05 m (d) y-line defect, zp = Lo /2, 2 —y1 = 0.1 m

Fig. 12. Curvature mode ¢, for hip/hy = 4% and line defects of various lengths, locations and orientations.
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tend to be more affected by the presence of damage, as demonstrated for example by the comparison of the
frequency changes in modes (1, 1) and (1, 3).

3.3. Modal deflections and curvatures

Modal deflections and curvatures for plates with notch damage are evaluated through the procedure pre-
sented above. The perturbation analysis is limited to the first order based on previous results for beams,
which have shown how the second order term gives minor contributions (Luo and Hanagud, 1998). The
Fourier series expansions are performed by considering the superposition of 300 terms. This number has
been selected after the qualitative analysis of mode shapes and curvatures predicted with increasing number
of expansion terms. A sample of these investigations is shown in Fig. 3, which presents the curvature ¢,;
for mode (1,2) estimated with increasing number of terms in the expansion. In the plot, the presence of

0.4

0 0

yim) xim) yim) %

x[m]

(a) z-line defect, yp = Ly /4, 2 —x1 = 0.3 m, hp/ho =  (b) z-line defect, yp = Ly/4, x2 — 1 = 0.3 m, hp/ho =
2% 4%

T fxy)

yim xim]

(¢) z-line defect, yp = Ly /6, 2 —x1 = 0.3 m, hp/ho =
4%

Fig. 13. Influence of extent and location of damage on curvature mode ¢, .
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damage is demonstrated by a peak at the corresponding location. It is easy to observe how 300 terms are
able to fully capture the peak and that considering higher numbers of terms does not provide additional
details on damage. Series expansion with 300 terms are therefore used in our study as a good compromise
between accuracy and computational efficiency. Examples of modal deflections and curvatures are shown in
Figs. 4-8 for several combinations of damage location and damage extent. The results for modes (1, 1) and
(1,3) are presented in Figs. 4 and 5, which clearly demonstrate how for the considered level of damage, the
deflection mode shapes are not affected by the presence of the notch, while the curvature modes highlight its
presence through a peak at the corresponding locations. The amplitude of the peak is proportional to the
extent of damage as shown in Fig. 6, which depicts the curvature mode ¢,, = for increasing damage ratios
hplhy. The effect of damage on the curvature modes also depends on its location with respect to the nodal
lines of the corresponding mode shapes. Fig. 7 shows for example how a notch damage with /ip/hy = 2%
becomes more evident when it is located close, or at the points of maximum curvature. Finally, Fig. 8
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Fig. 14. Examples of modal SER for various damage locations and extents.
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compares the effects of a defect of assigned extent on various modes, and demonstrates how the notch
tends to affect more significantly higher order modes than lower order modes. This observation confirms
the remarks made regarding the natural frequencies of the damaged plates listed in Table 1.

3.4. Strain energy ratio for damage localization

The strain energy ratio (SER) defined in the previous section is here used for the estimation of damage
location and extent. The SER is computed by discretizing the plate surface into a 60 x 60 grid, over which
the strain energy and its variation with respect to the undamaged configuration are computed. The integra-
tion required for the SER evaluation are evaluated analytically, due the convenient formulation for the
undamaged and damaged curvature modes obtained through the perturbation analysis. Results for notch
defects are presented in Figs. 9 and 10, where the SER distributions are represented as contour plots. The
abscissa and ordinates respectively represent the plate length L, and width L), while the magnitude of the
SER is indicated by a gray color scale varying between a minimum of 1.05 (black) to a maximum of 2
(white). The presence of the defect in the presented maps is highlighted by a peak at the corresponding
location, which stands out very evidently on the white background imposed on the figure. The extent of
the peak and mostly its magnitude are proportional to the damage extent and specifically to the parameter
€ or to the ratio hp/hy as predicted by Egs. (32) and (33). The correlation between damage extent and
magnitude of the SER is shown in Fig. 9, which presents modal SER results for notch defects of different
extent and location. The application of the superposition of modal SER distributions to obtain a single
damage index is instead illustrated in Fig. 10, which shows modal SER values for an assigned damage
configuration and the result of the combinations of the modal contributions according to Eq. (33). As dis-
cussed above, various modes have in fact different sensitivity to damage at a specific location. In here
for example, it is clear how the considered damage has very little effect on mode (3,1), as demonstrated
by the corresponding modal SER map shown in Fig. 10d. The combination of the various modal contri-
butions however is able to capture the presence of the defect by combining the information provided by
each mode.

4. Results for line defects

The presented analytical procedure is also applied to the analysis of line defects of the kind depicted in
Fig. 2. Results for various defect lengths, extensions and orientation are presented in Figs. 11-13. Fig. 11
for example shows the influence of damage on the curvature mode ¢, . Different defects lengths and ori-
entations are considered to demonstrate how the considered curvature mode highlights the presence of
damage through an evident discontinuity at the damage location. The length and the orientation of the dis-
continuity correspond to those of the considered defect. Fig. 12 presents results for the curvature mode
¢3,  of a damage plate. The plot in Fig. 12a is obtained for the defect located along the nodal line of
the curvature mode and therefore no discontinuity can be observed. The same damage at a different loca-
tion however becomes clearly evident as shown in the case presented in Fig. 12b. Morever, Fig. 12b and ¢
compare damage discontinuities corresponding to damage of increasing lengths to demonstrate the in-
creased sensitivity of the curvature modes. In Fig. 13 finally, the influence of damage location and extent
is demonstrated for mode d)lzw‘

Strain energy ratios are computed also for line defects. Examples of the results are shown in Figs. 14 and
15. The maps presented in Fig. 14 clearly demonstrate how the SER representation is able to provide infor-
mation regarding damage extent, length and location. Finally, Fig. 15 presents the result of the summation
procedure for various modal SER, to obtain a cumulative ratio to be used as a damage index in damage
identification routines.
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5. Experimental evaluation of the strain energy ratio

The application of the developed concept for the analysis of experimentally measured curvature modes is
presented in this section. The presented results demonstrate the effectiveness of SER as a damage indicator,
and show how it can be practically implemented as part of an inspection technique for plate-like structures.
The results in this section cannot be directly compared with those obtained analytically, as boundary con-
ditions and damage orientation are different than those considered in the previous analysis. However, we
here outline the procedure for carrying out the SER analysis based on experimental measurements and we
show that damage can be correctly identified using the developed procedure. A detailed description of the
experimental procedure and a complete set of results are presented in a companion paper by the same
authors (Sharma et al., 2005).

5.1. Experimental set-up

The considered test specimen is an aluminum plate of dimensions 14 in. x 14 in. x 0.040 in. The plate is
cantilevered at its base. A piezoceramic disc of 1.1 in. diameter and 0.030 in. thickness is used as an exciter.
The placement of the actuator is selected in order to excite the highest number of modes of the structure.
Plate, with actuator and damage location is shown in Fig. 16a. The actuator was simply bonded to the plate
using a Loctite Quick Set epoxy. The disc was also fully encased in a layer of epoxy to provide it with an
adequate backing to impart sufficient force to its base. A set of simple tests were conducted to ensure that
the effectiveness of the actuator in exciting the vibration modes and to check for durability of the bonding
epoxy, which demonstrated to be excellent. The damage is a 1.41 in. long, 0.05 in. wide and 0.015 deep
groove which was cut in the plate at the location shown in Fig. 16a. The plate response was measured using
a Scanning Laser Doppler Vibrometer (SLDV) by Polytec PI (model PSV400M2). The SLDV measures
the plate vibration at a large number of locations, thus providing unprecedented amount of information.
The measurement grid used for the tests is shown in Fig. 16b. The responses at the grid points is recorded,
stored, and converted into Matlab® for post-processing. In particular, the responses are interpolated
using spline functions, which can be conveniently differentiated for curvature evaluation. The process of

Piezoceramic
Actuator

| -
R

(a) Aluminum plate used for SER. tests (b) Measurement grid

Fig. 16. Cantilevered aluminum plate with detail of actuator and damage locations (a), and measurement grid (b).
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interpolation using splines minimizes the numerical errors associated with the spatial differentiation and
reduces the influence of noise in the data, as the differentiation is performed on the spline functions, while
the measured data simply act as weighting parameters for the interpolation of response and corresponding

curvatures (Sharma et al.

2005).

)

(a) ODS at 270 Hz

(b) ODS at 293 Hz

Fig. 17. Examples of experimentally measured ODS.
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Fig. 18. Curvature at 180 Hz for undamaged and damaged plate.
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Fig. 19. Experimentally evaluated SER through the superposition of first 5 modes.

5.2. Results

The plate is excited in the 0-500 Hz range using pseudo-random excitation. The forced response at the
plate natural frequencies, often denoted as Operational Deflection Shape (ODS), and corresponding curva-
tures in the excitation range are evaluated. Fig. 17 shows for example the measured ODS at 270 and 293 Hz,
while Fig. 18 compares the curvature at 182 Hz for the undamaged and damaged plate. The two curvatures
show differences at the damage location and their comparison can be used for the assessment of the pres-
ence of the groove. A more definite indication is however provided by the SER map presented in Fig. 19,
which clearly shows a deviation from unity at the damage location. The SER is obtained using the inter-
polated curvatures for damaged and undamaged plate and is the superposition of the first 5 measured
modes.

6. Conclusions

The dynamic behavior of damaged plates is investigated through perturbation techniques. This analyt-
ical framework allows investigating the effect of various types of damage on the plate modal parameters
and the formulation of a strain energy ratio index which can be used for damage identification purposes.
The formulation considers both point damage, as well as line defects which can be considered as simple
descriptions of longitudinal cracks or delaminations. Variation of natural frequencies, mode shapes and
curvature modes are investigated for the considered types of defects. The results indicate the high sensitivity
of curvature modes even in the presence of low levels of damage. These investigations therefore confirm
results previously obtained for beam structures and suggest the possible application of curvature modes
as efficient damage indicators. In addition, the curvature modes are used for the estimation of the plate
strain energy and to formulate a Strain Energy Ratio, which can be used to effectively identify location
as well as the extent of the defects. The presented analytical results provide invaluable insights on the effect
of damage on the plate modal parameters, and are used in support of experimental activities aimed at
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relating curvature changes in plate structures to the level and location of defects. An example of the results
obtained experimentally on plate structures is also presented in the final section of the paper.
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